
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Porting “real”
applications

to OpenVMS I64

Guy Peleg
OpenVMS Systems Division
Hewlett-Packard Company
guy.peleg@hp.com

11/10/2005 European Technical Update Days 2

Agenda
• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 3

Porting to OpenVMS I64

• Porting applications to I64 is easy

• Re - compile

• Re - link

• Test (if you must)

DonDon’’t believe me? t believe me?

See what other customers had to say

11/10/2005 European Technical Update Days 4

•• Generally the move to I64 on OpenVMS was an Generally the move to I64 on OpenVMS was an
easy one.easy one. One line of code changed!One line of code changed!

•• The developer tools are great and very polished The developer tools are great and very polished
and compatible.and compatible. What could be easier?What could be easier?

•• The move from Alpha to I64 was easier than I The move from Alpha to I64 was easier than I
planned.planned. If the application builds on the latest If the application builds on the latest
version of the compilers on Alpha the move really version of the compilers on Alpha the move really
is reis re--compile, recompile, re--link, and relink, and re--test. test.

11/10/2005 European Technical Update Days 5

Porting to OpenVMS I64

• Major changes in the O/S
−Different primitives
−Different default floating point standard
−New compilers
−New image format
−New calling standard
−No console/PAL code

Most changes are transparent but some might
affect your application

11/10/2005 European Technical Update Days 6

Porting to OpenVMS I64

• The purpose of this presentation is to use the
experience we gained porting the base O/S, to
ease the porting of your application.

−We are trying to cover the most common issues.
It is possible that you will encounter something not
covered here.

• One more time….for most applications
….recompile and relink will do……

11/10/2005 European Technical Update Days 7

• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 8

Conditionalized code

• This is the first (and easiest) step to take
−Usually, IA64 should take what used to be the Alpha

code path.
• In some cases, IA64 specific code path should be added

#include <stdio.h>
#include <arch_defs>
void main()
{
#ifdef __vax

printf("This is the VAX codepath");
#endif
#ifdef __alpha

printf("This is not the VAX codepath");
}

11/10/2005 European Technical Update Days 9

Conditionalized code

• Macro
.IF DF ALPHA .IF DF IA64
.ENDC .ENDC

• C / C++
#ifdef __alpha #ifdef __ia64
#endif #endif

• Bliss
%IF ALPHA %THEN %IF IA64 %THEN
%FI %FI

11/10/2005 European Technical Update Days 10

Conditionalized code – example
IPL31> type arch_test.c

#include <stdio.h>
#include <arch_defs>
void main()
{
#ifdef __vax

printf("This will be printed on VAX\n");
#endif
#ifdef ALPHA

printf("This will be printed on Alpha\n");
#endif
#ifdef __ia64

printf("This will be printed on IA64\n");
#endif
#ifndef __vax

printf("This program is not running on VAX");
#endif
}

11/10/2005 European Technical Update Days 11

Conditionalized code
Executed on IA64 system
IPL31> write sys$output f$getsyi("arch_name")

IA64

IPL31> r arch_test

This will be printed on IA64

This program is not running on VAX

IPL31>

Executed on Alpha system

MIKAXP> write sys$output f$getsyi("arch_name")

Alpha

MIKAXP> r arch_test

This will be printed on Alpha

This program is not running on VAX

11/10/2005 European Technical Update Days 12

• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 13

IEEE floating- point

• Itanium supports only IEEE floating-point
in hardware

• On IA64 - IEEE floating-point is the default
floating point format for the compilers.
−VAX floating point formats supported when

specified as a switch to the compilers
−The compilers generate code to call conversion

routines (performance hit).

11/10/2005 European Technical Update Days 14

IEEE floating- point

• To use IEEE change the source to use S &
T versions of the APIs.
−Some functions (like sin, cos,….) already know

how to handle IEEE and require no changes to
the application.

Q: My application uses F-float. I’m currently porting it to
I64, I’m excited enough about the new architecture and I
don’t want to make any source changes for now.
What can I do?

A: Have no fear….HP OpenVMS engineering are here…

Let’s take a look at a real example……

11/10/2005 European Technical Update Days 15

$ ty float_test.c
#include <stdio.h>
#include <libdtdef.h>
#include <descrip>
#include <ssdef>

// prototypes
int lib$cvtf_to_internal_time();
int sys$fao();
int lib$put_output();
int lib$signal();

static $DESCRIPTOR (fao_desc, "Converted delta time: !%T");

main () {

float f1;
unsigned long long int delta1;
int status;
char output[50]={0};
struct dsc$descriptor_s outdesc;
short int length;

//init the descriptor
outdesc.dsc$w_length = sizeof(output);
outdesc.dsc$a_pointer = (char *)&output;
outdesc.dsc$b_class = DSC$K_CLASS_S;
outdesc.dsc$b_dtype = DSC$K_DTYPE_T;

f1 = 156.45;

printf("This program converts %f seconds to delta time\n", f1);

status = lib$cvtf_to_internal_time(&LIB$K_DELTA_SECONDS_F, &f1, &delta1);

if (!(status&1))
lib$signal(status);

if ((sys$fao(&fao_desc,&length,&outdesc,&delta1))&1)
lib$put_output(&outdesc);

}

Convert seconds to delta time

11/10/2005 European Technical Update Days 16

Executed on Alpha:
AXP> cc float_test

AXP> link float_test

AXP> r float_test

This program converts 156.449997 seconds to delta time

Converted delta time: 00:02:36.44

Executed on IA64:
I64> cc float_test

I64> link float_test

I64> r float_test

This program converts 156.449997 seconds to delta time

%LIB-F-IVTIME, invalid time passed in, or computed

%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC

FLOAT_TEST 0000000000010240 0000000000010240

FLOAT_TEST 00000000000100D0 00000000000100D0

0000000000000000 FFFFFFFF80B1A030

0000000000000000 000000007AE1BEE0

11/10/2005 European Technical Update Days 17

Compiled again using the /FLOAT qualifier

I64> cc float_test/float=g_float
I64> link float_test
I64> r float_test
This program converts 156.449997 seconds to delta time
Converted delta time: 00:02:36.44
IPL31>

Note the program would fail on Alpha as well if compiled
with ieee_float

AXP> cc float_test/float=ieee
AXP> link float_test
AXP> r float_test
This program converts 156.449997 seconds to delta time
%LIB-F-IVTIME, invalid time passed in, or computed
%TRACE-F-TRACEBACK, symbolic stack dump follows

image module routine line rel PC abs PC

FLOAT_TEST FLOAT_TEST main 4514 0000000000000174 0000000000030174
FLOAT_TEST FLOAT_TEST __main 0 0000000000000064 0000000000030064

0 FFFFFFFF8025DE94 FFFFFFFF8025DE94

11/10/2005 European Technical Update Days 18

IEEE floating- point
• On IA64, the default value for the /FLOAT qualifier is IEEE_FLOAT.

This program relies on the binary representation of the floating point
value and therefore it fails on IA64.

• Compiled on IA64 with /FLOAT=G_FLOAT forced the compiler to use
the default Alpha representation. No code changes are required in this
case but there is some runtime cost.

• To use IEEE floating point representation, this program should be
modified to use LIB$CVTS_TO_INTERNAL_TIME

• LIB$WAIT is another common example where floating point conversion
may become an issue…let’s take a look….

11/10/2005 European Technical Update Days 19

AXP> ty wait.c

#include <stdio.h>

main()

{

float wait=7.0;

printf("Waiting 7 seconds\n");

lib$wait(&wait,0,0);

printf("I'm done wainting..ciao...\n");

return 0;

}

Executed on Alpha:
AXP> cc wait

AXP> link wait

AXP> r wait

Waiting 7 seconds

I'm done wainting..ciao...

11/10/2005 European Technical Update Days 20

Executed on I64:
I64> cc wait

I64> link wait

I64> r wait

Waiting 7 seconds

%SYSTEM-F-FLTINV, floating invalid operation, PC=FFFFFFFF82142760, PS=0000001B

%TRACE-F-TRACEBACK, symbolic stack dump follows

image module routine line rel PC abs PC

LIBRTL 000000000016C752 FFFFFFFF82142752

LIBRTL 000000000020F430 FFFFFFFF821E5430

WAIT 0000000000010250 0000000000010250

WAIT 0000000000010180 0000000000010180

0000000000000000 FFFFFFFF80B1A030

0000000000000000 000000007AE1BEE0

The default floating point format used by LIB$WAIT is

F_FLOAT, which does not match the default floating point

format used on I64 (S_FLOAT)

11/10/2005 European Technical Update Days 21

Here is a modified version that will work on both
platforms, using the native floating point formats

I64> ty wait_common.c
#include <stdio.h>
#include <arch_defs>
#include <libwaitdef>
main()
{
float wait=7.0;
#ifdef __alpha

int mask = LIB$K_VAX_F;
#endif
#ifdef __ia64

int mask = LIB$K_IEEE_S;
#endif

printf("Waiting 7 seconds\n");
lib$wait(&wait,0,&mask);
printf("I'm done wainting..ciao...\n");

return 0;
}

11/10/2005 European Technical Update Days 22

• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 23

Build tools

• The port to Itanium requires that applications will be built
using the latest versions of the compilers
− Some applications being built with older versions might see some

issues introduced by changes to the compilers and even bugfixes
within the compilers.

− For example - Older versions of Bliss used to return completion
status for functions defined NOVALUE (similar to C void)
• On I64 this has been fixed and some utilities failed

− You might get away with relying on uninitialized variables, but on I64
you will be severely punished

• Try building your application on Alpha, using the latest
version of the compilers you are using to uncover any
hidden bugs/changes. This will make the move to the new
platform easier.

11/10/2005 European Technical Update Days 24

Example – Moving from F77 to F90
• When using double precision float (REAL*8) for doing

direct assignment (a=5.3)

F77 uses double precision

F90 uses single precision.

The result is slightly further away from the real 5.3 value.

• A computation will produce a different result with no error
signaled.

• Possible solutions:
− Fix the coding bug, as the assignment is wrong.

• Change the assignment to a=5.3D0 or a=5.3_8

• 5.3D0 works for both F77 and F90

− Compile using the /ASSUME=FP_CONSTANT switch

11/10/2005 European Technical Update Days 25

Example – Moving from F77 to F90
IPL31> ty float.for

REAL*8 TEST

TEST = 5.3
PRINT 100,TEST

100 FORMAT(F,' assigned as TEST = 5.3 ')

TEST = 5.3D0
PRINT 200,TEST

200 FORMAT(F,' assigned as TEST = 5.3D0')

END
IPL31> for float
IPL31> link float
IPL31> r float

5.3000001907348633 assigned as TEST = 5.3
5.2999999999999998 assigned as TEST = 5.3D0

IPL31> for/assume=fp_const float
IPL31> link float
IPL31> r float

5.2999999999999998 assigned as TEST = 5.3
5.2999999999999998 assigned as TEST = 5.3D0

11/10/2005 European Technical Update Days 26

• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 27

Fortran compile time initialization

• Very large common blocks with fields initialized at
compile time may result in excessively large object
files and long compile times

• This problem does not exist on Alpha

• Perform data initialization at runtime or move the
initialized data to a smaller common block to avoid
the problem

11/10/2005 European Technical Update Days 28

Improperly declared functions and
data

• C function declarations that points to objects that are not
functions, may work on Alpha but will fail to work on IA64
− Also seen with Bliss and Fortran

• The problem may manifest itself in many ways
− For whatever reason, the most common symptom is a call to routine

CLI$DCL_PARSE that fails with CLI-E-INVTAB

external int my_cld();

status = cli$dcl_parse(&cmdstr, my_cld,
libget_input, libget_input);

external int my_cld;

status = cli$dcl_parse(&cmdstr, &my_cld,
libget_input, libget_input);

11/10/2005 European Technical Update Days 29

Improperly declared functions and
data
• Another example, LIB$TABLE_PARSE failing with syntax error when the state

table and/or key table addresses were declared as a function

VMS> diff src$:SJ_PARSE_DESCRIP.C;3

File WORK4:[SRC]SJ_PARSE_DESCRIP.C;3
18 extern int parse_state, parse_key; /* parse table */
19

File WORK4:[SRC]SJ_PARSE_DESCRIP.C;2
18 extern int parse_state(), parse_key(); /* parse table */
19

File WORK4:[SRC]SJ_PARSE_DESCRIP.C;3
51 status = lib$table_parse(&tpablk, &parse_state, &parse_key);
52

File WORK4:[SRC]SJ_PARSE_DESCRIP.C;2
51 status = lib$table_parse(&tpablk, parse_state, parse_key);
52

Number of difference sections found: 2
Number of difference records found: 2

DIFFERENCES /IGNORE=()/MERGED=1-
WORK4:[SRC]SJ_PARSE_DESCRIP.C;3-
WORK4:[SRC]SJ_PARSE_DESCRIP.C;2

11/10/2005 European Technical Update Days 30

Improperly declared functions and
data

• The Fortran variant of the fix would be

CDEC$ ATTRIBUTES EXTERN :: MY_CLD

• The Linker detects this condition
%ILINK-I-DIFTYPE, symbol TEST_CLD of type OBJECT cannot be referenced as type

FUNC
module: TEST

file: 1DKC600:[IA64]TEST.OBJ;2

11/10/2005 European Technical Update Days 31

C++ Default Model

• The default value for the /MODEL qualifier is ARM
on Alpha and ANSI on IA64

• /MODEL is ignored on IA64
−ANSI is the only supported format
−May require changes to existing code

• See the C++ release notes for full details:

http://h71000.www7.hp.com/commercial/cplus/I64_doc/rni64.html

• Compiled with /MODEL=ARM string literals are of type
“array of char”

• Compiled with /MODEL=ANSI string literals are of type
“array of const char”

11/10/2005 European Technical Update Days 32

$ type error.cxx
#include <iostream.h>
double divide (double x, double y)
{

if (y==0)
throw "divide by 0";

else
return (x/y);

}
void main()
{

try{
cout<<"5/2="<<divide(5.0,2.0)<<endl;
cout<<"5/0="<<divide(5.0,0.0)<<endl;
cout<<"5/1="<<divide(5.0,1.0)<<endl;

}

catch (char *msg){

cout<<msg<<endl;
}

cout<<"end of main"<<endl;
}

Simple Exception Signaling
in C++

11/10/2005 European Technical Update Days 33

Executed on Alpha:
AXP> cxx error
AXP> cxxlink error
AXP> r error
5/2=2.5
5/0=divide by 0
end of main

Executed on IA64:
I64> cxx error
I64> cxxlink error
I64> r error
5/2=2.5
%CXXL-F-TERMINATE, terminate() or unexpected() called
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC
TRACEBACK - Exception occurred during traceback processing
CXXL$LANGRTL 0 0000000000054B90 FFFFF802090C0B90
TRACEBACK - Exception occurred during traceback processing
CXXL$LANGRTL 0 0000000000041190 FFFFF802090AD190

0 FFFFFFFF803DD150 FFFFFFFF803DD150
image module routine line rel PC abs PC
TRACEBACK - Exception occurred during traceback processing
CXXL$LANGRTL 0 00000000000415B0 FFFFF802090AD5B0
TRACEBACK - Exception occurred during traceback processing
CXXL$LANGRTL 0 0000000000054280 FFFFF802090C0280
ERROR ERROR divide #5 0000000000000160 00000000000101E0
ERROR ERROR main #13 0000000000000320 00000000000103A0
ERROR ERROR ELF$TFRADR #1788 0000000000000730 00000000000107B0

0 FFFFFFFF80B6C630 FFFFFFFF80B6C630
DCL 0 000000000006BD20 000000007AE25D20
%TRACE-I-LINENUMBER, Leading '#' specifies a source file record number.
%TRACE-I-END, end of TRACE stack dump
5/0=

11/10/2005 European Technical Update Days 34

Here is a modified version that will work on both
Platforms:

$ type error.cxx
#include <iostream.h>
double divide (double x, double y)
{

if (y==0)
throw "divide by 0";

else
return (x/y);

}
void main()
{

try{
cout<<"5/2="<<divide(5.0,2.0)<<endl;
cout<<"5/0="<<divide(5.0,0.0)<<endl;
cout<<"5/1="<<divide(5.0,1.0)<<endl;

}

catch (const char *msg){

cout<<msg<<endl;
}

cout<<"end of main"<<endl;
}

11/10/2005 European Technical Update Days 35

C++ Optimization

• Default optimization options are consistent with
Alpha.

• Programs using floating point should try compiling
with /assume=(noaccuracy_sensitive,nomatherrno)
−Result changing optimizations are not turned on by

default
−Similar optimization to Intel Linux compiler

• Try /opt=level=5
−More aggressive optimization
−Main differences are for floating point code but might

benefit integer as well.

11/10/2005 European Technical Update Days 36

C++ long pointers

• Long pointers currently ignored by the C++
compiler
−Only affecting C++

$ ty long.cxx

main ()

{

int *y;

}

$ cxx/point=long long.cxx

%CXX-W-NOPTR64, 64-bit pointers are not supported in this release on

this platform. 32-bit pointers will be used.

11/10/2005 European Technical Update Days 37

Hardware Model
• The hardware model for all IA64 systems is set to 4096
− HW model is set to 0 in E8.1 and E8.2

I64> write sys$output f$getsyi("hw_name")
HP rx2600 (900MHz/1.5MB)
I64> write sys$output f$getsyi("hw_model")
4096

• Any code relying on the hardware model of the system has to change.
• SHOW MEMORY used to determine the page size based on the

following algorithm:
if (hardware_model>=1024)

page_size=8192;
else page_size=512;

• SHOW MEMORY has been modified to use the SYI$_PAGE_SIZE
item code on VAX/Alpha and IA64.

11/10/2005 European Technical Update Days 38

IMACRO

• On I64 the calling standard changed
− We now use Intel’s software conventions
− IA64 only preserves register R4-R7 across routine calls

(Alpha preserves R2-R15)
− For programs written in high-level languages (like

C,Bliss) this difference is not visible.
− When MACRO-32 programs added you have to start

worrying about how to pass register parameters between
languages.

− High-level languages might trash a register IMACRO
assumed to be preserved (and vice versa)

− Please reference the IMACRO porting guide for more
details

11/10/2005 European Technical Update Days 39

IMACRO - coding changes
− JSB_ENTRYs that reference R16-R21should be changed to .CALL_ENTRYs

that reference n(AP)

XFC_COMPARE_QIOS:
.JSB_ENTRY
MOVL (R16),R0
MOVL (R17),R1
EVAX_SUBQ CFS$Q_TOTALQIOS(R0),-

CFS$Q_TOTALQIOS(R1),R0
RSB

XFC_COMPARE_QIOS:
.CALL_ENTRY
MOVL @4(ap),R0
MOVL @8(ap),R1
EVAX_SUBQ CFS$Q_TOTALQIOS(R0),-

CFS$Q_TOTALQIOS(R1),R0
RET

− Code that is moving data in R16-R21 and then perform a JSB should
be modified to use $SETUP_CALL64 and $CALL64

11/10/2005 European Technical Update Days 40

IMACRO - coding changes
• MACRO32 JSBs to any other language (Bliss/C) routines

• If IMACRO can’t determine the language of a target JSB, the
following message will be generated:

JSB (R6) ;ALLOCATE AND INSERT ENTRY IN SYMBOL TABLE
%IMAC-I-CODGENINF, (1) Indirect JSB with default linkage

− .USE_LINKAGE directive with the LANGUAGE=OTHER option tells
iMacro that the target routine is written in a language other than
IMACRO. IMACRO will than save and restore R2,R3,R8-R15 around
the JSB except for registers in the output mask.

It is recommended to add a USE_LINKAGE statement prior to the JSB
call

.use_linkage language=other (or language=macro if the target routine is in MACRO)
JSB (R6)

11/10/2005 European Technical Update Days 41

IMACRO - coding changes
• MACRO32 CALL/CALLG to non-standard routines
− A non standard routine (written in Bliss C or MACRO) returns a value in a

register other than R0 or R1
− Since IMACRO saves and restores R2,R3,R8-R15, the returned value may

be overridden
− .CALL_LINKAGE or .USE_LINKAGE should be used in every module that

calls the non standard routine.
− For example,

.CALL_LINKAGE RTN_NAME=FOO$BAR, OUTPUT=<R3,R8,R10>
− The call_linkage needs only to appear once in every module
− The .USE_LINKAGE directive will be used only once
− Here is a small example from DCL, where a MACRO routine is calling a C

routine.

.IF DF IA64

.use_linkage input=<r0,r1,r2,r3,r8,r9>, output=<r0,r1,r2>,
language=other

.ENDC
JSB DCL$FID_TO_NAME ; dispatch to the action routine

11/10/2005 European Technical Update Days 42

Lock Pages in Working Set

• SYS$LKWSET and SYS$LKWSET_64 system
services runtime behavior has been modified
−The entire image, not the specified range of pages, is

locked
−Consider using LIB$LOCK_IMAGE and

LIB$UNLOCK_IMAGE for simplicity

11/10/2005 European Technical Update Days 43

Condition Handlers Use of
SS$_HPARITH
On OpenVMS Alpha, SS$_HPARITH is signaled for a
number of arithmetic error conditions. On OpenVMS I64,
SS$_HPARITH is never signaled for arithmetic error
conditions; instead, the more specialized SS$_FLTINV and
SS$_FLTDIV error codes are signaled on OpenVMS I64.

Update condition handlers to detect these more specialized
error codes. In order to keep code common for both
architectures, wherever the code refers to SS$_HPARITH,
extend it for OpenVMS I64 to also consider SS$_FLTINV
and SS$_FLTDIV.

SS$_HPARITH

SS$_FLTINV

SS$_HPFLTDIV

Alpha I64

11/10/2005 European Technical Update Days 44

Up yours!

Quotas and process settings

• OpenVMS I64 images are much larger, sometimes
3x-4x

• Ensure your pgflquo and bytlm are (at least)
4x-10x your Alpha settings.
− $ set default sys$system
− $ run authorize
−UAF> mod your_account/pgflquo=nnnnnn
−UAF> mod your_account/bytlm=nnnnnn

11/10/2005 European Technical Update Days 45

THREADS

• THREADCP tool was not ported to OpenVMS I64
−Relink to change threads related characteristics of an

image
−Use the new SET IMAGE command

• If your application increases the stack size for a
thread from the default size, you should increase
it more

HP recommends starting with an increase of three
8-Kb pages (24576 bytes).

11/10/2005 European Technical Update Days 46

There is more……
• The topics covered so far are the most common issues seen by people

porting their applications. Here is a list of less common (and much
more complicated) issues.

• We adopted Intel’s calling standard. Code with knowledge
about the calling standards will have to change
− Stack/frame walking – the code will need to be modified to use the

new LIB$*_INVO_* routines
− Home grown stack switching/threading – the code will need to be

ported to use KPs

• We adopted the ELF/DWARF formats. Code with
knowledge about image format and debug format will have
to change

• Calling LIB$FIND_IMAGE_SYMBOL and friends does not count.
The LIB$ routines were modified to support the new formats

11/10/2005 European Technical Update Days 47

Reading EXE and OBJ files

• Use ANALYZE/IMAGE vs. parsing the EXE file.

• We are looking at adding a callable interface into
SHOW/SET image.

ANALYZE/IMAGE DCL Symbol that is set Sample Value
/SELECT=ARCHITECTURE ANALYZE$ARCHITECTURE OpenVMS IA64
/SELECT=NAME ANALYZE$NAME "DECC$COMPILER"
/SELECT=IDENTIFICATION=IMAGE ANALYZE$IDENTIFICATION "C T7.1-003"
/SELECT=IDENTIFICATION=LINKER ANALYZE$LINKER_IDENTIFICATION "Linker I02-08"
/SELECT=LINK_TIME ANALYZE$LINK_TIME "6/29/2004 4:26:35 PM"
/SELECT=FILE_TYPE ANALYZE$FILE_TYPE Image
/SELECT=IMAGE_TYPE ANALYZE$IMAGE_TYPE Executable

11/10/2005 European Technical Update Days 48

Infrastructure changes in
OpenVMS V8.2

• We made changes to some system level data
structures in OpenVMS V8.2 (Alpha and I64)

• Benefits
− Laying the foundation for scalability and performance

improvements in future releases of OpenVMS

• Impact to applications
−Non-privileged applications are not affected
−Applications that access the modified data structures in

non-standard ways may need to be modified
• Examples: hard-coded data structure sizes and assumptions

about the relative locations of fields within a data structure

11/10/2005 European Technical Update Days 49

• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 50

Debugging using XDELTA
− The system must be booted with XDELTA.
− From the EFI shell

• SHELL> SET VMS_FLAGS “0,3” (bit 1 should be set)
− The SYSGEN parameter BREAKPOINTS must be

set to allow breaking in user,super or exec mode

− Add breakpoints to your code
• Macro

ia64_break #break$c_dbg_inibrk
• C

__break(BREAK$C_DBG_INIBRK);

I64> r ast
Brk 0 at 00010030 on CPU 0
00010030! break.m 080003 (New IPL = 0) (New mode = USER)
00010031! add r12 = 3FFC, r12 ;P

Have fun……you might want to boot with VAXCLUSTER set
to 0 to prevent a clustered system from crashing with
CLUEXIT

Use with

Caution!

11/10/2005 European Technical Update Days 51

• Porting Overview

• Conditionalized code

• IEEE Floating-Point

• Build tools

• Miscellaneous topics

• Using the XDELTA debugger

• Next steps…

11/10/2005 European Technical Update Days 52

Alignment faults

• Once the port of the application has been completed, you
might want to look at alignment faults
− Alignment faults are expensive on Alpha but are 100 times more

expensive on IA64
− The DEBUG SET MODULE/ALL command used to take 90 seconds.

After fixing some alignment faults, it now takes 2 seconds.
− DCL procedures takes approx. 10% less time to execute after fixing

alignment faults in DCL.

− You may detect alignment faults using FLT extension in SDA or
using SET BREAK/ALIGN option in the debugger

− Some alignment faults are easy to fix, some are very hard and some
are close to impossible.

11/10/2005 European Technical Update Days 53

Wait a second….I don’t have the
sources…

• OpenVMS Migration Software for HP AlphaServer
Systems to HP Integrity Servers (OMSAIS)

• Utility that translates executables and shareable
images from Alpha to I64

• Supports translation of images written in: C, C++,
Fortran, COBOL, BLISS, MACRO-32, MACRO-64

11/10/2005 European Technical Update Days 54

OMSAIS

• OMSAIS includes two components:
−AEST (Alpha Environment Software Translator)
−TIE (Translated Image Environment)

• TIE provides run-time support for translated
images
− Integrated into V8.2-1
−Separate download for V8.2

• Free download available from:
http://h71000.www7.hp.com/openvms/products/omsva/omsais.html

11/10/2005 European Technical Update Days 55

Acknowledgements

• The following people were kind enough to
share their experience with me and made
this presentation possible:

−Dave Sweeney
−Anders Johansson
−John Reagan
−Jeff Nelson
−Christian Moser

11/10/2005 European Technical Update Days 56

11/10/2005 European Technical Update Days 57

Integrity Servers – Hardware
Overview

• No “Vax like” or “Alpha like” console

• Has multiple consoles:
−Management Processor (MP)
−Baseboard Management Console (BMC)
−Both attempt to be common across the entire

hardware range

• Uses Extensible Firmware Interface (EFI)
rather than BIOS.

11/10/2005 European Technical Update Days 58

MP console

• Runs with box level power, even with system off.

• Local, remote (modem) and network connectivity

• Console configuration (terminal type, etc.)

• Network configuration (hostname, IP address, etc.)

• Multiple console sessions (one writer, many
readers)

• Provides ability to copy files over the netwrok
(firmware updates)

11/10/2005 European Technical Update Days 59

BMC

• Runs with main board powered up

• Local connectivity (9 pin serial)

• Power up, self tests

• Device detection

• Console configuration

• No graphics console

11/10/2005 European Technical Update Days 60

EFI

• Mini operating system

• FAT formatted file system (FAT12, FAT16
and FAT32), VMS presents FAT16 partition
to EFI

• Boot menu and defaults

• Environment variables (VMS_FLAGS, etc.)

• VMS_LOADER.EFI finds and loads
IPB.EXE

• IPB.EXE understands the OpenVMS file
system, EFI does not.

11/10/2005 European Technical Update Days 61

Boot and Device detection

• EFI boot loader from FAT partition (hidden as a
container file on the system disk)

• Boot flags passed through environment variables

• Reads executive into memory

• Passes control to the executive

• The system uses ACPI (Advanced Configuration
and Power Interface) for device detection by the
firmware

• Devices appear as a set of CSRs (Control and
Status Registers) in physical memory – the I/O
space.

11/10/2005 European Technical Update Days 62

Boot and Device detection

• Devices have interrupt vectors which
connect a device interrupt request to the
device driver interrupt service routine.
Device data obtained from ACPI data.

• ACPI data indicates device type.

• SYSMAN IO AUTO will query ACPI data to
find devices and set up OpenVMS device
drivers to communicate with the hardware

• Now Let’s take a look, how the past 6
slides look at real life….

11/10/2005 European Technical Update Days 63

11/10/2005 European Technical Update Days 64

11/10/2005 European Technical Update Days 65

11/10/2005 European Technical Update Days 66

11/10/2005 European Technical Update Days 67

11/10/2005 European Technical Update Days 68

From this point on….
VMS is VMS is VMS…..

11/10/2005 European Technical Update Days 69

Conditionalized code
Sample Fortran 90 program

$!

$! Note: F90 not available on VAX

$!

$ if f$getsyi("ARCH_NAME") .EQS.
"IA64"

$ then

$ f90/define=IA64 archdef_for

$ else

$ if f$getsyi("ARCH_NAME") .EQS.
"Alpha"

$ then

$ f90/define=ALPHA
archdef_for

$ endif

$ endif

$ endif

$ link archdef_for

program archdef

implicit none

!DEC$ IF DEFINED (VAX)

type *, 'Running on VAX hardware'

!DEC$ ELSEIF DEFINED (ALPHA)

type *,'Running on Alpha hardware'

!DEC$ ELSEIF DEFINED (IA64)

type *,'Running on Integrity hardware'

!DEC$ ENDIF

end

COM file Language file

11/10/2005 European Technical Update Days 70

Conditionalized code
Sample Basic program

$!! if you VAX or Alpha system is older,
ARCH_NAME may not be accepted

$!! by f$getsyi... ARCH_TYPE (1-VAX,
2=Alpha, 3=IA64) will be...

$ open/write out
sys$disk:[]archdef.basic_include

$ write out "%LET %ARCH_TYPE =
",f$getsyi("arch_type")

$ close out

$ purge sys$disk:[]archdef.basic_include

$ basic archdef_bas

$ link archdef_bas

$ exit

!

!

%INCLUDE "sys$disk:[]archdef.basic_include"

program archdef_bas

%IF (%ARCH_TYPE = 1)

%THEN Print "Running on VAX"

%ELSE %IF (%ARCH_TYPE = 2)

%THEN Print "Running on Alpha"

%ELSE %IF (%ARCH_TYPE = 3)

%THEN Print "Running on
Integrity"

%END %IF

%END %IF

%END %IF

end program

COM file Language file

11/10/2005 European Technical Update Days 71

Conditionalized code
Sample Cobol program

$!

$ if f$getsyi("ARCH_NAME") .EQS. "IA64"

$ then

$ cobol/conditional=I archdef_cob

$ else

$ if f$getsyi("ARCH_NAME") .EQS. "VAX"

$ then

$ cobol/conditional=V archdef_cob

$ else

$ if f$getsyi("ARCH_NAME") .EQS. "Alpha"

$ then

$ cobol/conditional=A archdef_cob

$ endif

$ endif

$ endif

identification division.

program-id. HW.

environment division.

data division.

procedure division.

p1. display "Hello World".

\A display "Running on Alpha".

\V display "Running on VAX".

\I display "Running on Integrity".

stop run.

COM file Language file

11/10/2005 European Technical Update Days 72

Conditionalized code
Sample Pascal
program

$ pascal archdef_pas

$ link archdef_pas

program example(output);

%if %arch_name = "Alpha"

%then

var handle : integer := 0;

%elif %arch_name = "IA64"

%then

var handle : integer64 := 0;

%elif %arch_name = "VAX"

%then

var handle : integer := 0;

%endif

begin

writeln('Program running on ',%system_name,

' ',%arch_name,

' ',%system_version);

%if %arch_name = "Alpha"

%then

writeln('Running on Alpha');

%elif %arch_name = "IA64"

%then

writeln('Running on Integrity');

%elif %arch_name = "VAX"

%then

writeln('Running on VAX');

%endif

end.

COM file

Language file

