

The ltanium®

Architecture A

A

Technical : o
Overview

Thomas Siebold

Technical Consultant

Transition Engineering & Consulting
Business Critical Server Division

thomas.siebold@hp.com

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

mailto:thomas.siebold@hp.com

The ltanium®

Architecture

A

Technical
Overview

Thomas Siebold

Technical Consultant

Transition Engineering & Consulting
Business Critical Server Division

thomas.siebold@hp.com

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

mailto:thomas.siebold@hp.com

nnnnnn

Language and cultural ditterences

This is a ,mobile phone’

...but in Germay it is called a -
handy’ O
,handy 2

...but in other countries a
,handy’ is a

April 21, 2004 4

Agendo D]

Terminology
ltanium® Roadmap
The ltanium® Architecture

April 21, 2004 5

invent

Processor Architectures and A
Implementations

Alpha Architecture @

__IBBA-Arehitecture

Intel Itanium® Architecture

M Madison
}

Itanium®?2

Itanium®
McKinley processor

Itanium®2
processor

EV7

EV6

implementations

Itanium® Processor Family

Alpha® Processor Family

April 21, 2004 7

I Working Together

ntal / M

)

<=E

nnnnnn

I Continue Working Together S

Alpha —> Intel

® Alpha technology/resources enhance
Itanium®-based compilers/tools (SW)

@ Alpha technology/resources

accelerate and enhance Itanium® Architecture
processors/platforms (HW)

April 21, 2004

Intel® ltanium® Processor Family Roadmap %3

. ® : Q) .
ltanium" 2 ltanium™ 2 M : Tukwila
ontecito
Processor Processor Multi Core,

1.5GHz, 6M; 1.4GHz, (Madison 9M) Dual Core, 24MB, Developed with
4M; 1.3GHz, 3M >1.5GHz, 9M gy ex-Alpha team

. ® .
[tanium ™ 2 [tanium® 2
Processor Processor

1.4GHz, 1.5M, DP >1.4GHz, DP DP DP

Future Future

LV Itanium® 2t LV ltanium® 2
Processor Processor Future Future

1.0GHz, 1.5M, DP >1.0GHz, DP DP, Low Voltage DP, Low Voltage

2004 j 2005 ~ Next Generation

Long term Itanium® Roadmap Strength

Delivering on the Architecture

MP/DP CAPABLE

Montecito**
0 0 0 0 Dual Core
(Madison**) (Madison9M**) Larger caches

1.5GHz >1.5GHz
6MB iL3 cache 9MB iL3 cache

Tukwila**
Multi Core

DP-ONLY
Low Voltage Low Voltage | Montecito- Future
ltanium 2 ltanium 2 based Processors
Processor Processor
(Deerfield**) (Deerfield
**codename
I 180nm '. 130nm “ 90nm ’

2002 2003 2004 2005

future

All dates specified are target dates, are provided for planning purposes only and are subject to change.

April 21, 2004

11

ltanium

ltanium™ Processor

System Bus
64 bits wide

133MHz/266 MT/s
2.1 GB/s

System Bus

Width

2 bundles per clock

4 integer units

2 load or stores per clock

9 issue ports L3 Cache o

Caches =
L1 - 2X16KB - 2 clock latency !I !I
L2 - 96K - 12 clock latency &

= 0

Core
800 MHz

L3 - 4MB external —20 clk
11.7 GB/s bandwidth

Addressing
44 bit physical addressing

50 bit virtual addressing
Maximum page size of 256MB

o ®
llanivm: 2
PIIOCESSoI

((VadisenrsalDEETHiiEeld);

. ®
Itanium 2
Processor

(1 GHz, 3VB L3)

.36z, &M L)

April 21, 2004

ltanium?2 - McKinley /

System Bus
128 bits wide

200MHz/400 MT/s
6.4 GB/s

Width

2 bundles per clock

6 integer units

2 loads and 2 stores per clock
11 issue ports

Caches
L1 - 2X16KB - 1 clock latency
L2 — 256K - 5 clock latency
L3 -3MB /6MB - 12 clk

32 GB/s bandwidth

Addressing
50 bit physical addressing

64 bit virtual addressing
Maximum page size of 4GB

ltanium 2
PliOCESSOI
((Vi2eiSeRECIV)

(L8568, VB L)

Morriecito

(Duzal Core)

System Bus

Silicon Process
0.18 um

Madison**

**codename

3rd Generation Itanium® Architecture Processor
130nm Process, 410M Transistors
1.5GHz Frequency

6 GFLOPS DP-F.P Peak

6MB integrated L3-Cache (48GB/s)

Pin-Compatible to Itanium® 2 Processor
100% Binary Compatible
Same Thermal Envelope
Low-Voltage Version (Deerfield**) in 2H2003
~1.3-1.5x faster than Itanium® 2

April 21, 2004 13

Q]

ltanium® 2 Processor Block Diagram

Cache
256KB
(B-way,
128B CL)

and Re-Mapping

v

Data
Frontside
Bus
(2x200MHZ)

L3 cache
and
System
Bus
Control

sy
=
E
=

ALAT
(full asa.)

L1 Data [ty

iL3 cache
3-6MB
(24-way
128B CL)

Full clock speed

Full clock speed
(schematic overview)

14

April 21, 2004

Intel® ltanium2®-based

microarchitecture block diagram

L1 instruction cache and ITLB
fetch/pre-fetch engine

1A-32
Branch N
predication Instruction ~ 8bundles —— decode

queuve and
_III_IIiI—II_V_ contl
11 issue ports .-

|

L2 cache—quad port

Scoreboard, predicate,
NaTs, exceptions

ECC
ECC Bus Controller

April 21, 2004

15

23
Montecito**

=

......

**codename

5th Generation Itanium® Architecture Processor

90Nnm Process

Dual Enhanced Core per Die
High Frequency

12MB integrated L3-Cache per Core
Multi-Threading Support

Some few new Instructions

Low-Voltage Version as well
Target in 2005

All features and dates specified are targets provided for planning purposes only and are subject to change

April 21, 2004 16

Itanium2 Processor ("McKinley”)

Floating
B h Point Pipeli
22 1M FETs i bk, Chrel (deqeriill

Integer

42 —l mmz EIA-.E Register
il File
. 16KE L1 Multimedi
Q0+% of the transistors and cache o
504% of the die area are Advanced SO
Load O
devoted to cache and Pl N °
cache support logic L Cache
oy ' TraE:;:'nn
o F 1 |
Madison: = 410M FET il ookaside
urrer

Montecito: = 1000M FET

256KB L2 Cache Bus Logic 3MB L3 Cache L3 Tags

and Control

< 19.5mm >

April 21, 2004 17

Intel Enterprise Micro-Architectures

4 SystemBus P

MB On-die Cache }
<On-die multi-thread

<Pipeline Stages }
Issue Ports 02030405068 7N8 191001

264 Application Registers
+ 64 Predicate Registers*

b & 44

Performance via Megahertz
ey J Memory Addressing P 1024 TB

HyJIQer -Threading er Threadlng
echnoelogy echno ogy,

40 Reg'Ste’S On-die Registers }

2 2x Integer 2 - -
1 1x Integger Floating Execution Units > 6 Integer, 2 FP, 2 Load and
1 MMx & SSE__ Point 3Branch 1SIMD 2 Store
3.8 GHz < Core Frequency 1.8 GHz

4 Instructions / Clk }

Performance via Parallelism

April 21, 2004 18

ltanium is uniquely architected tor Q]
performance

ltanium integrates the best of IA32 performance technology with
torward-looking architectural enhancements

x86 32-bit/64-bit Xeon processor EPIC 64-bit ltanium processor architecture
* Optimized for cost/performance * Optimized for best throughput performance in
performance in small to medium large and complex technical and commercial
scale application and databases workloads

e Performance is much more than 64-bits

X86 32b/64b Xeon ltanium System features ltanium Customer benefits
24 to 40 general registers 264 application registers + 64 Efficient operation; high performance:
Thread-level parallelism predicate registers Reduced context switching

(Hyperthreads) Instruction-level parallelism + core- Eff!c!ent workload management
level parallelism* Efficient clock-cycle utilization

Hardware-based parallelism Data and control speculation Improve effective memory latency

Dual-core implementations* Dual-core + multi-core Higher performance density

: -
implementations Better system price/performance

Performance driven by high- Improved clock-cycle utilization Sustained performance advantage for

clock-rates (>3GHz) business criticial applications

Mature development tools and | Core hardware performance Installed systems get faster, even
improved by future compiler without hardware upgrades

compiler optimization et
P P nphmnnhqpc

April 21, 2004 19

ltanium® Architecture:
Optimized tor Multi-Core

Parallel execution leadership: only Intel

has all 3:

Multi cores on same die

Multi threads on same core

———— 9

ITANIUM
Explicit Parallelism in each core . +50%-100
EPIC*: inherent advantages for multi- " in 07+

core, multi-thread

Architecture: Parallelism + many
registers to keep data on-chip

Core size: Smaller than [A-32, up to 2X
more cores per die on Tukwila (than on

1A-32)

* For Enterprise & Technical Computing
Application Segments

ltanium® Processor family delivers >2X Moores’ Law performance

* EPIC is Itanium’s architecture “Explicitly Parallel Instruction Set Computing”

April 21, 2004 20

The tanium®
Architecture

Explicitly Parallel Instruction Computing 0|
Basic ldeas T e

Static Hardware Design
Compiler creates record of execution
Instructions in bundles
Machine plays record

Distribute among execution units
No runtime changes like out-of-order-excution

High Scalability of ,execution units’
Very Large Instruction Word (VLIW) concept
Focus is parallelism
6 instructions in parallel (2 bundles per cycle)
High number of execution units

April 21, 2004 22

ltanium Architecture — Basic |deas A2

Traditional architecture

original
source
code

—>| compiler |

_——

sequential
machine code

execution ynits unused —
reduced efficiency

hardware

implicitly
parallel

nnnnn

ltanium™ architecture

original parallel
source machme code
code

onlum
— ose
compiler

multiple execution
units

massive

resources

Increased parallelization — more throughput

April 21, 2004

23

Traditional Architecture Limits i~
EPIC Solutions 3

Today’s Limits: complexity of multiple pipelines too great to allow effective on-chip
scheduling for parallel operation

> Solution: explicit parallelism
Compiler handles Scheduling and communicates this to the chip

Today’s Limit: number of registers on chip limits parallelism
> Solution: quadruple registers from 32 to 128

Today’s Limit: Large (and growing) memory latency

> Solution: speculative loads

Today’s Limit: conditional and/or unpredictable branches

> Solution: prediction and predication orchestrated by the compiler

April 21, 2004 24

Architecture Limits — EPIC Solutions

Increasing Instruction

Level Parallelism

Explicit Parallelism O |

- Instruction Level Parallelism (ILP) is the ability to execute multiple
instructions at the same time

Explicitly Paralle| Instruction .(Eompu’ring ‘EPIC) allows the
compiler or assembler to specity the parallelism

ompiler specifies Instruction Groups, a list of instructions
wic’riw nopdepeFr)\dencies that can be execuPeof in parallel

Instructions are packed in bundles of 3 instructions each
Instruction bundle
Two executed per cycle

Massive resources on Chip
Large number of registers to avoid register contention

April 21, 2004 27

:) |
I Instruction Format: Bundles & Templa’respg

Bundle Structure

2
=
I I I I E
instruction slot 2 | instruction slot 1 | instruction slot 0 | =

127 &6 45 4 0

*Bundle (123 bits)
*Set of three instructions (41 bits each)

e Template (5 bits)
*|dentifies types of instructions in bundle

*One of Integer, Memory, Branch, Floating, eXtended

*|dentities independent operations (“stops”) -> MM_F
*Defines execution units to be invoked executing the bundle
* Compiler can schedule functional units to avoid contention

April 21, 2004 28

Instruction Format:
Bundles & Templates

Instruction types
M: Memory
|: Shifts and multimedia
A: Integer Arithmetic and Logical Unit
B: Branch
F: Floating point
L+X: Long (move, branch, ...)

Template encodes types
MIl, MLX, MMI, MFI, MMF
Branch: MIB, MMB, MFB, MBB,BBB

Template encodes parallelism
All come in two flavors: with and without stop at end

Also, stop in middle: MI_| M_M|

April 21, 2004

nnnnnn

29

Explicitly Parallel Instruction Encoding (]

Program:

Instruction Groups:
Explicit group stops
*No RAW or WAW dependencies

Instruction Bundles:

*3 Instructions and template
*Stops at the end or within

Bundle 16 byte == 128 bits \

April 21, 2004 30

Instruction Dispersal, ltanium® Implementation

Dispersal
instruction Window
stream

Flexible Issue Capability

Up to 6 instructions executed per clock

April 21, 2004 31

Explicitly Parallel Instruction Computing 'O
EE F)»l(::: invent

S2 S1 SO T .. .
| | | | | = 128-bit instruction bundles from I-cache
[] [] [] 1
[] [] [] 1
[] [] [] 1
[] [] [] 1
5 I I — -
5 [I —

Fetch one or more bundles for execution
(Implementation, Itanium® takes two.)
Processor /

Try to execute all instructions in
functional units parallel, depending on available

I) [] | s

1L

s e —— RETIFEd instruction bundles

[] [] [] 1
[] [] [] 1

April 21, 2004 32

Detined templates (A

o wrr [BN|EETIEET] e
1 wrr; [
R
3 MI;I;
s mx pEEE
=
8 MMI MFI bundl
: : s oz, M] e
Execution Units 10 M;MI E (ENEN
11 M;MI;--- N
Memory . . --- From I-cac ‘e
= =
ry R |
Branch 15 MMF; b= |- | T
eoomE Belfe e
17 MIB; - - EI
18 MBB - = El
19 MBB;
B || B | B Branch Unit
22 BBB
B || B El decode
23 BBB;
24 MMB IIIIIIIIII 5
25 wes; [0 00 =)
28 MFB --E
o 0

April 21, 2004 33

Q]

ltanium® 2 Dispersal Matrix

MIl | MLI | MMI MFI | MMF | MIB | MBB | BBB | MBB | MFM

MiII
MLI
MMI
MFI
MMF
MIB*
MBB
BBB
MMB*

* hintin first bundle EIEEE Possible Itanium® 2 full issue
I Possible Itanium® processor and Itanium® 2 full issue

April 21, 2004 34

nnnnnn

I Instruction Groups

Instruction groups:

Set of instructions

No dependencies (raw, waw) within group
May execute in parallel

The processor executes as many instructions per
instruction group as possible, based on its resources

Must contain at least one instruction (no upper limit)

Instruction groups are indicated by cycle breaks (;;)

April 21, 2004 35

Instruction groups and bundles A

148 r5 = [r7] Instructions within a group may not
sub rl = r2, r3 have any register dependencies within
add r10 = r20, r2l ;; the group.

add rl = rl, 3 ;; . .

st8 [r7] = rl ;; indicates the end of a group.

Instruction bundles

{ . Instructions are fetched and
-mid // template executed in bundles.
148 r10, [r5] // slot 0, Memory
addrl = r2, r3 // slot 1, Integer
addr4 = r5,ré6 // slot 2, Integer
}

April 21, 2004 36

Instruction groups and bundles Q]

invent

Itanium® and Itanium2® fetch 2 bundles at a time for execution.
They may or may not execute in parallel.

Handwritten code Instruction bundles

Execution
instr Code generator Fetch
. | ™ | instr instr instr tmpl _{
instr . . . }————————__>
. o instr instr instr tmpl
Instr ;; . .
instr instr instr nop tmpl
. N instr nop nop tmpl .
ﬁi:” instr instr nop tmpl Can the bundle pair
intsr instr instr nop tmpl Execute in parallel ?
instr intsr instr instr tmpl |¢——
instr
instr;; | «—m—o
instr
:2::: Forgetting end-of-group Code generator creates bundles,
may be fatal: possibly including nops.

add rl = rl1l, r5 ;:;
st8 [r7]= rl

There are two difficulties:

1) Finding instruction triplets matching the defined templates.
2) Matching pairs of bundles that can execute in parallel.

April 21, 2004 37

Q]

Massive On Chip Resources
Several register files visible to the programmer:
: : : Predicate
Integer Registers F.P. Registers Branch Registers :
Registers
NaT 63 0
63 0 81 0
GRO FRO — BRO PRO [
GR1 FR1 [S PRI K
BR7 i
PR15 |
GR31 FR31
GR32 FR32 PR16 ﬂ
PR63
FR127
| | 16 Static I
_ 32 Static o 32 Static 48 Rotating [

l 96 Framed, Rotating l 96 Rotating

April 21, 2004 38

Improving

Branch Handling

nnnnnn

What is the problem 2
Traditional CPUs:

Branch-prediction is used to predict the most likely set of
instructions
Correct branch prediction keeps the execution pipelines full

A mispredicted branch flushes the pipeline with a large penalty

ltanium® architecture improves branch handling:
Provide a way to minimize branches using predicates
Provide support for special branch instructions

counted loop: br.ctop, br.exit
While loop: br.wtop, br.wexit

April 21, 2004

40

I Branch Handling o

Predication
Conditional execution of instructions
When the predicate is true, the instruction is executed
When it is false, the instruction is treated as a NOP

Predication converts a control dependency into a
data dependency

Predication eliminates branches in the code

April 21, 2004 41

Predication

Traditional code:
if (a>b)
c=c+1
else
d=d*e + F

Avoid branch by using predicated code
pl, p2 = compare(a>b)
iIT (pl) c=c + 1
if () d=d*e + f

Predicate p1 set to 1 if compare is true, and to O if it
evaluates to false

p2 is the complement of p1

April 21, 2004

nnnnnn

42

I Predication

Before:

- Instructionsc = ¢ + 1andd = d * e + Fare
control dependant on a<b

After:

- Instruction are data dependant:
~ Values of p1 and p2
— They determine execution
— The branch is eliminated

April 21, 2004

43

Predication

Traditional

Architecture

Cmp a,b

|

(o]}

Q

April 21, 2004

=

else

ltanium® Architecture

Cmp a,b pT, pF

nnnnn

I EEEEE [T

Only one ‘branch’ will have a valid
predicate and be executed.

44

Predication /A

predication provides the ability to conditionally execute
instructions based on computed true/false conditions

avoids branches
predicated instruction either completes or is dismissed (no ops)
predicate registers are set by compare/test instructions

Typical Optimized IPF

t? %!false | (pLp2)<cmp(rLr2) |

™~ i

April 21, 2004 45

IPF Instructions (cont)

Instruction style is “(Pn) opcode target(s)=source(s)”

Example:

(p4) cmp.eq p7,pl2 = r37, r52
(p7) br labell

(p12) br label?2

First instruction only:
P4 controls whether or not the results are kept or discarded
the result registers are predicate registers P7 and P12
R37 is compared for equality with R52
It equal: P7 is setto 1 and P12 is set to O.
If not equal: P7 is setto O and P12 is setto 1.

Codmk()iinotion of three instructions show how an ifthen-else might be
coded.

April 21, 2004 46

Reducing Memery Access Cost

ltanium® architecture eliminates many memory accesses
through:

large register files to manage work in progress
better control of the memory hierarchy (cache hints)

ltanium® architecture reduces remaining memory accesses
by:
moving load instructions earlier in the code
Data speculation - advance a load before a possible data dependency
Control speculation — speculative load before its guarding branch
-> allows early execution of loads to hide latency
-> enables the processor to bring in the data in time
-> avoids stalling the processor

April 21, 2004 48

Data Speculation e

allows early execution of loads to hide latency

advance load before a possible data dependency (load
before store)

speculative load before a branch that guards it

Memory latency can be
responsible for 60% or
more of processor stalls

April 21, 2004 49

I Advanced and Speculative loads

April 21, 2004

Load X advanced load

load Y speculative load

X=X+1
IF(X==0) Y=Y+1

nnnnnn

50

Data Speculation Q]

allows early execution of loads to hide latency

advance load before a possible data dependency (load

before store) o
typical optimized IPF

reschedule load.a

N store

load

chk.a recover

recovery

support for data speculation
> ALAT (advanced load address table) — hardware structure that
contains information about outstanding advanced loads

> advanced loads: Id.a

» check loads: Id.c Latency can be

> advance load checks: chk.a responsible for 60% or
» speculative advanced loads: |d.sa more of processor stalls

April 21, 2004 51

I Control Speculation

allows early execution of loads to hide latency

speculative load betore a branch that guards it

typical optimized IPF
y load.s
branch
branch
load — chk.s >] recover
recovery

support for control speculation
> NaT (Not a Thing) bit — 65" bit of GR, set on incorrect speculation
instead of faulting
» NaT bit propagated in computations
> speculation check: chk.s
> speculative load: Id.s

April 21, 2004 52

nnnnnn

Massive Memory Resources
Physical memory

Full implementation will address 16 EB ot physical
memory (2°4)

16,000,000,000GB

ltanium® architecture microprocessor has 44-bit
address bus

16TB (16,000GB) physical memory addressable
ltanium2® architecture microprocessors have 50-bit

address bus
Virtual memory

ltanium® architecture microprocessor uses 50-bits
ltanium2® architecture microprocessors uses 64-bits

April 21, 2004 53

Procedure Call Overhead o

Modular programs create more overhead
Programs tend to be call intensive
Register space shared by caller and callee
Call/Returns require register save/restores
Frequent memory access
Limitations due to resource shortage

ltanium® solution

Massive register resources
Renaming, rotating
Integer registers stackable

Register Stack Engine (RSE)
Eliminates memory accesses
Allows to allocate local registers dynamically

April 21, 2004 55

nnnnnn

Register Stack

The general register stack is divided
into two subsets:

Static: 32 permanent registers (rO-
r31)

visible to all procedures

Used for global variables

Stacked: 96 other registers are like a
stack

procedure code allocates up to 96
registers for a frame Static

previous frame is hidden

tirst register is renamed to logical register
r32 Procedure A Procedure B

small frames eliminate/reduce
saving/restoring registers to/from

_memory
April 21, 2004

56

I Register Stack Engine (RSE) o
When a progedure is called

New frame o Global s o available

Caller’s regg;; t re n registers,
invisible affe boic d procedure
It deep nesti .’ﬂﬁ | registers the
RSE will save |of hi registers to

memory to fre oUrc
On return to « ller’s ter content
automatically . s
RSE works in lf stacked [und, ing unused
memory bagg) Registers

Activity not visible to application programs

April 21, 2004 57

I Procedure Call Overhead o

Traditional

Procedure A
call B

Procedure B

save current register state

restore previous register state

return...

April 21, 2004

Itanium® Architecture

Procedure A
call B

Procedure B

alloc, no save!

no restore! (remap)

return

58

sol — size of locals
sof — size of stack frame

32+sof,-1 32+sof,-1
32+so0l,-1 " 32+so0l,-1
ALLOC RETURN
— —_—
32 32
31 31 31 31
0 0 0 0
A before B immediately B after A after return
call to B after call from A alloc from B

April 21, 2004 59

Loop Optimization Overhead

Enhance loop performance:

Done by unrolling loops

Regular

Causes code expansion Loop

Prologue/epilogue add to code size
ltanium® solution

Software pipelining

Architecture support

April 21, 2004

Software
Pipeline

Minimal prologue/epilogue code
Predication
Loop control registers (LC, EC)

Loop branches (br.ctop,
br.wtop)

=
=4
=]
[i=]
=
5]
=
=
@
1]
-3
=]
/=]

60

I Sottware Pipelining Q]

Loop
Sequential Loop ‘ Software-Pipelined Loop Iterations

Prologue

Kernel

| S —

Epilogue

Time |

¥ Time !I

* Multiple iterations execute in parallel

ILP Maximized

*Different iteration stages execute in parallel
*Execution load is balanced

April 21, 2004 61

I Sottware Pipelining

iteration iteration iteration iteration iteration cycle

1 2 3
‘ Id4
‘ Id4
add Id4
st4 add
st4 add
st4

April 21, 2004

4

Id4

add

st4

5

Id4

add

st4

X

X+1

X+2

X+3

X+4

X+5

X+6

X+7

nnnnnn

Prolog

Epilog

62

Architecture Limits — EPIC Solutions

ltanium(r) Achitecture Training

'fshale.intel.comfsoftwarecollege/CourseCatalog.asp?CatName-PROCESSORS - Microsoft Internet Explorer

File Edit Wiew Favarites Tools Help

eBack - e - |ﬁ @ _h /._‘J Search ‘\:n'\'_(Favorites @Media {‘} 3 - :7 =T _I ﬁ yj

Address |®J https:jishale.intel. com/softwarecallegefCourseCatalog. aspFCatMame=PROCESSORS

B ~DoF &P options | [IF Software -] A B oAl 0 s &5 & - 1 @ADAPDive -

nvent

v| Bl ks @~ W KategoneIE

|nte| US Home | Inteltoridwide Withere to Buy | Training & Events | CentactUs | About Intel

» Resource * Products » Technologies |} Support
Centers & Services & Trends & Downloads

* Hardware Design
Intel® Software College

Development Products

Home
Products
X Course Catalog Courses / hedules
Compilers
. . C Catalog

Performance Analyzers The Intel® Software College is the one-stop shop for training on 50:5: ; a;R" ot

E Schedule & Registration
Performance Libraries Intel's software and technologies. cheddle 2gistration

Onzite & Customn Training
Training Centars

Threading Tools

Summary of all Products Flease select a category fram the menu below to see the available
courses in that category. Ifyou do not see a course offering of interest
Browese By ar ifyou are interested in an onsite course, please contact us Registered Users
Intel® Software College gisterad Users
Downloads & Purchase Select a category: Login
Support |PROCESSORS -
Services 3 5
0 = Software Products
ser Forums
Processors Compilems
Plews & Events e EE
Intel’® tanium® Processor Family Eerformance Analyzers
Setting Ready for Intel® i i conline) Eerformance Libraries
R R . Thresding Tools
Getting Started With the 2 Prosessar (Classroam)
High Ferf (s} Tuning for Clusters (2 daws) -
i) 1
2-based platform (C a Other Resources
High Ferf fe} ing: Cluster Setup, from Building to
Benchmatking (2 dawvs)- ltanium™ 2-based platform (Classroom) Intel® Ceveloper Services for
. . . 3
the Intels — zoffware developers
Cintimizing Inteld ttani N - \sking the Mact af Intel® Learning Hetwo
= e Intel® Press Technical Bosks
ltanium Compilers (Online)
Intel® Solution Semnices
Perf Analysis for the Intel® 2-hazed Platforms using the
WTune™ Fer Analyzer (Gl 3
Soale Right to b, the Walue of IT” (ifebcast Transeript)
Tuning for the Intel® 2 M (i)
Using Intel® Compilers to Extract Best Pert fram Itani 2-hased

Elatforms (Classroom)

Using the Intel® Processor Set (Online)

4 Processor

Detecting HyperThreading T on Desdop Systems (Online)
Inside the P 4 Frocessor b (Online)

ing St ing SIMD ions 2 for the Pentium® 4 Processar
(Oinline)
Level of Detail: Mult Wesh (Online)
Level of Detail: ivisi (Dnliney
Fer Ainalysis for the Intel® 1432 Flatforms Using the WTune™
Fer | 1
Ereparing to Optimi ications for the Penti 4 Processar(Onling)

SSEZ: Perfarm a Double-Frecision 30 Transtarm (Online)

-~

<

=)

April 21, 2004

8 Internet

64

L]

nnnnnn

I ltanium® Architecture Training

The tollowing classes can be taken online or can be
downloaded:

Getting Software Ready for Intel® ltanium®
Architecture

Introducing the Intel® Iftanium® Architecture

Using the Intel® Itanium® Processor Instruction
Set

Intel(r) Software College

https://shale.intel.com/softwarecollege/CourseCatalog.
asp?CatName=PROCESSORS

April 21, 2004 65

https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=16
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=16
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=13
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=158
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=158
https://shale.intel.com/softwarecollege/CourseCatalog.asp?CatName=PROCESSORS
https://shale.intel.com/softwarecollege/CourseCatalog.asp?CatName=PROCESSORS

nnnnnn

	The Itanium® ArchitectureA Technical Overview
	The Itanium® ArchitectureA Technical Overview
	Language and cultural differences
	Agenda
	Terminology
	Working Together
	Continue Working Together
	Intel® Itanium® Processor Family Roadmap
	Itanium
	Itanium® 2 Processor Block Diagram
	Intel® Itanium2®-based microarchitecture block diagram
	Itanium2 Processor (“McKinley”)
	Intel Enterprise Micro-Architectures
	Itanium is uniquely architected for performance
	Itanium® Architecture: Optimized for Multi-Core
	Explicitly Parallel Instruction Computing Basic Ideas
	Itanium Architecture – Basic Ideas
	Traditional Architecture LimitsEPIC Solutions
	Architecture Limits – EPIC Solutions
	Explicit Parallelism
	Instruction Format: Bundles & Templates
	Explicitly Parallel Instruction Encoding
	Instruction Dispersal, Itanium® Implementation
	Itanium® 2 Dispersal Matrix
	Instruction Groups
	Massive On Chip Resources
	What is the problem ?
	Branch Handling
	Predication
	Predication
	Predication
	Predication
	IPF Instructions (cont)
	Reducing Memery Access Cost
	Data Speculation
	Data Speculation
	Control Speculation
	Massive Memory Resources
	Procedure Call Overhead
	Register Stack
	Register Stack Engine (RSE)
	Procedure Call Overhead
	Register Stack Engine (RSE)
	Loop Optimization Overhead
	Software Pipelining
	Software Pipelining
	Architecture Limits – EPIC Solutions
	Itanium(r) Achitecture Training
	Itanium® Architecture Training
	Transition slide headline textgoes here

